
DeepSafe: A Data-driven Approach for Assessing
Robustness of Neural Networks

Divya Gopinath1, Guy Katz3, Corina S. Păsăreanu1,2, and Clark Barrett3

1 Carnegie Mellon University
2 NASA Ames Research Center

divgml@gmail.com,corina.s.pasareanu@nasa.gov
3 Stanford University

guyk@cs.stanford.edu, barrett@cs.stanford.edu

Abstract. Deep neural networks have achieved impressive results in many com-
plex applications, including classification tasks for image and speech recogni-
tion, pattern analysis or perception in self-driving vehicles. However, it has been
observed that even highly trained networks are very vulnerable to adversarial
perturbations. Adding minimal changes to inputs that are correctly classified can
lead to wrong predictions, raising serious security and safety concerns. Exist-
ing techniques for checking robustness against such perturbations only consider
searching locally around a few individual inputs, providing limited guarantees.
We propose DeepSafe, a novel approach for automatically assessing the overall
robustness of a neural network. DeepSafe applies clustering over known labeled
data and leverages off-the-shelf constraint solvers to automatically identify and
check safe regions in which the network is robust, i.e. all the inputs in the region
are guaranteed to be classified correctly. We also introduce the concept of targeted
robustness, which ensures that the neural network is guaranteed not to misclassify
inputs within a region to a specific target (adversarial) label. We evaluate Deep-
Safe on a neural network implementation of a controller for the next-generation
Airborne Collision Avoidance System for unmanned aircraft (ACAS Xu) and for
the well known MNIST network. For these networks, DeepSafe identified many
regions which were safe, and also found adversarial perturbations of interest.

1 Introduction
Machine learning techniques such as deep neural networks (NN) are increasingly used
in a variety of applications, achieving impressive results in many domains, and match-
ing the cognitive ability of humans in complex tasks. In this paper, we study a common
use of NN as classifiers that take in complex, high dimensional input, pass it through
multiple layers of transformations, and finally assign to it a specific output label or
class. These networks can be used to perform pattern analysis, image classification, or
speech and audio recognition, and are now being integrated into the perception mod-
ules of autonomous or semi-autonomous vehicles, at major car companies such as Tesla,
BMW, Ford, etc. It is expected that this trend will continue and intensify, with neural
networks being increasingly used in safety critical applications which require high as-
surance guarantees.

However, it has been observed that state-of-the-art networks are highly vulnerable
to adversarial perturbations: given a correctly-classified input x, it is possible to find a
new input x′ that is very similar to x but is assigned a different label [17]. The vulnera-
bility of neural networks to adversarial perturbations is thus a major safety and security
concern, and it is essential to explore systematic methods for evaluating and improving
the robustness of neural networks against such attacks.

To date, researchers have mostly focused on efficiently finding adversarial pertur-
bations around select individual input points. The problem is typically cast as an opti-
mization problem: for a given network F and an input x, find an x′ such that F assigns
different labels to x and x′ (denoted F (x′) 6= F (x)), while minimizing the distance
‖x − x′‖, for different distance metrics. In other words, the goal is to find an input x′

as close as possible to x such that x′ and x are labeled differently. Finding the optimal
solution for this problem is computationally difficult, and so various approximation ap-
proaches have been proposed [17, 6, 5, 3]. There are also techniques that focus on gen-
erating targeted attacks: adversarial perturbations that result in the network assigning
the perturbed input a specific target label [17, 6, 5].

The approaches for finding adversarial perturbations have successfully demonstrated
the weakness of many state-of-the-art networks. However, using these techniques in as-
sessing a network’s robustness against adversarial perturbations is difficult, for two rea-
sons. First, these approaches are heuristic-based, and provide no formal guarantees that
they have not overlooked some adversarial perturbations; and second, these approaches
only operate on individual input points, which may not be indicative of the network’s
robustness around other points. Approaches have also been proposed for training net-
works that are robust against adversarial perturbations, but these, too, provide no formal
assurances [13].

Formal methods present a promising way for obtaining formal guarantees about the
robustness of networks. Recent approaches tackle neural network verification [7, 10] by
casting it as an SMT solving problem. Reluplex [10] can check the local robustness at
input point x, by checking if there is another point x′ within a close distance δ to x
(‖x − x′‖ < δ) for which the network assigns a different label.The initial value δ is
picked arbitrarily and is tightened iteratively until the check holds. Similarly, DLV [7]
searches locally around given inputs x within a small δ distance, but unlike Reluplex, it
adopts discretization of the input space to reduce the search space.

These techniques are still limited to checking local robustness around a few in-
dividual points, giving no indication about the overall robustness of the network. In
principle, one can apply the local check to a set of inputs that are drawn from some
random distribution thought to represent the input space. However, this would require
coming up with minimally acceptable distance δ values for all these checks, which can
vary greatly between different input points. Furthermore, the check will likely fail (and
produce invalid adversarial examples) for the input points that are close to the legitimate
boundaries between different labels.

The concept of global robustness is defined in [10, 11], which could be checked by
Reluplex (we give the formal definition in Section 6). Whereas local robustness is mea-
sured for a specific input point, global robustness applies to all inputs simultaneously.
The check requires encoding two side-by-side copies of the NN in question, operating

on separate input variables, and checking that the outputs are similar. Global adversar-
ial robustness is harder to prove than local robustness for two reasons: (1) encoding
two copies of the network results in twice as many network nodes to analyze and (2)
the problem is not restricted to a small domain, and therefore can not take advantage
of Reluplex’s heuristics, which work best when the check is restricted to small neigh-
borhoods. Furthermore, it requires more manual tuning, as the user needs to provide
minimally acceptable values for two parameters (δ and ε). As a result this global check
could not be applied in practice to any realistic network [10].

Thus the problem of assessing the overall robustness of a network remains open.

DeepSafe. We propose DeepSafe, an automatic, data-driven approach for assessing the
overall robustness of a neural network. The key idea is to effectively leverage the inputs
with known correct labels to automatically identify regions in the input space which
have a high chance of being labelled consistently or uniformly, thereby making global
robustness checks achievable.

Specifically, DeepSafe applies a clustering algorithm over the labeled inputs to
group them into clusters, which are sets of inputs that are close to each other (with
respect to some given distance metric) and share the same label. The labeled inputs can
be drawn from the training set or can be generated directly from executing the network
on some random inputs; in the latter case the user needs to validate that the labels are
correct. We use k-means clustering [9], which we modified to be guided by the labels
of known inputs, but other clustering algorithms could be employed as well.

Each cluster defines a region which is a hypersphere in the input space, where the
centroid is automatically computed by the clustering algorithm and the radius is defined
as the average distance of any element in the cluster from the centroid. Our hypothesis
it that the NN should assign the same label to all the inputs in the region, not just to the
elements (inputs with known labels) that are used to form the cluster. The rationale is
that even highly non-linear networks should display consistent behavior in the neigh-
borhoods of groups of similar inputs known to share the same true label. We check this
hypothesis by formulating it as a query for an off-the-shelf constraint solver. For our
experiments we use the state-of-the-art tool Reluplex, but other solvers can be used. If
the solver finds no solutions, it means that the region is safe (all inputs are labeled the
same). If a solution is found, this indicates a potential adversarial input. We use the ad-
versarial example as feedback to iteratively reduce the radius of the region, and repeat
the check until the region is proved to be safe. If a time-out occurs during this process,
we can not provide any guarantee for that region (although the likely answer is that it is
safe). The result of the analysis is a set of well-defined input regions in which the NN
is guaranteed to be robust and s set of examples of adversarial inputs that may be of
interest to the developers of the NN, and can be used in retraining.

Thus, DeepSafe decomposes the global robustness requirements into a set of local
robustness checks, one for each region, which can be solved efficiently with a tool like
Reluplex. These checks do not require two network copies and are restricted to small
input domains, as defined by the regions. The distance used for the local checks is
not picked arbitrarily as in previous approaches, but instead it is the radius computed
for each regions, backed up by the labeled data. Furthermore regions define natural

decision boundaries in the input domain, thereby increasing the chances of producing
valid proofs or of finding valid adversarial examples.

We introduce the concept targeted robustness in line with targeted attacks [17, 6,
5]. Targeted robustness ensures that there are no inputs in a region that are mapped
by the NN to a specific incorrect label. Therefore, even if in that region the NN is not
completely robust against adversarial perturbations, we can give guarantees that it is
robust against specific targeted attacks. As a simple example, consider a NN used for
perception in an autonomous car that classifies the images of a traffic light as red, green
or yellow. Even if it is not the case that the NN never misclassifies a red light, we may
be willing to settle for a guarantee that it never misclassifies a red light as a green light
— leaving us with the more tolerable case in which a red light is misclassified as yellow.

We implemented a prototype of DeepSafe and evaluated it on a neural network
implementation of a controller for the next-generation Airborne Collision Avoidance
System for unmanned aircraft (ACAS Xu) and on the well known MNIST dataset. For
these networks, our approach identified regions which were completely safe, regions
which were safe with respect to some target labels, and also adversarial perturbations
that were of interest to the network’s developers.

2 Background

2.1 Neural Networks

Neural networks and deep belief networks have been used in a variety of applications,
including pattern analysis, image classification, speech and audio recognition, and per-
ception modules in self-driving cars. Typically, the objects in such domains are high
dimensional and the number of classes that the objects need to be classified to is also
high — and so the classification functions tend to be highly non-linear over the input
space. Deep learning operates with the underlying rationale that groups of input param-
eters can be merged to derive higher-level abstract features, which enable the discovery
of a more linear and continuous classification function. Neural networks are often used
as classifiers, meaning they assign to each input an output label/class. Such a neural
network F can thus be regarded as a function that assigns to input x an output label y,
denoted as F (x) = y.

Internally, a neural network is comprised of multiple layers of nodes, called neu-
rons. Each node refines and extracts information from values computed by nodes in
the previous layer. The structure of a typical 3 layer neural network would be as fol-
lows: the first layer is the input layer, which takes in the input variables (also called
features) x1, x2, . . . , xn. The second layer is a hidden layer: each of its neurons com-
putes a weighted sum of the input variables according to a unique weight vector and a
bias value, and then applies a non-linear activation function to the result. The sigmoid
function (f(x) = 1/(1 + e−x) is a widely used activation function. Most recent net-
works use rectified linear units (ReLUs) activation functions. A rectified linear unit has
output 0 if the input is less than 0, and raw output otherwise; f(x) = max(x, 0). The
last layer uses a softmax function to assign an the output class is the input. The softmax
function squashes the outputs of each node of the previous layer to be between 0 and 1,

equivalent to a categorical probability distribution. The number of nodes in this layer is
equal to the number of output classes and their respective outputs gives the probability
of the input being classified to that class.

2.2 Neural Network Verification
Traditional verification techniques often cannot directly be applied to neural networks,
and this has sparked a line of work focused on transforming the problem into a format
more amenable to existing tools, such as LP and SMT solvers [4, 7, 15, 16]. DeepSafe,
while is not restricted to, currently uses the recently-proposed Reluplex tool, which
has been shown to perform better than other solvers, such as Z3, CVC4, Yices or
MathSat [10]. Reluplex is a sound and complete simplex-based verification procedure,
specifically tailored to achieve scalability on deep neural networks. It is designed to op-
erate on networks with piecewise linear activation functions, such as ReLU. Intuitively,
the algorithm operates by eagerly solving the linear constraints posed by the neural
network’s weighted sums, while attempting to satisfy the non-linear constraints posed
by its activation functions in a lazy manner. This often allows Reluplex to safely dis-
regard many of these non-linear constraints, which is where the bulk of the problem’s
complexity originates.

Reluplex has been used in evaluating techniques for finding and defending against
adversarial perturbations [2], and it has also been successfully applied to a real-world
family of deep neural networks, designed to operate as controllers in the next-generation
Airborne Collision Avoidance System for unmanned aircraft (ACAS Xu) [10]. How-
ever, as discussed, Reluplex could only be used to check local robustness around a few
individual points, giving limited guarantees about the overall robustness of these net-
works.

2.3 Clustering
Clustering is an approach used to divide a population of data-points into sets called
clusters, such that the data-points in each cluster are more similar (with respect to some
metric) to other points in the same cluster than to the rest of the data-points. Here we
focus on a particularly popular clustering algorithm called kMeans [9] (although our
approach could be implemented using different clustering algorithms as well). Given a
set of n data-points {x1, . . . , xn} and k as the desired number of clusters, the algorithm
partitions the points into k clusters, such that the variance (also referred to as “within
cluster sum of squares”) within each cluster is minimal. The metric used to calculate
the distance between points is customizable, and is typically the Euclidean distance
(L2 norm) or the Manhattan distance (L1 norm). For points x1 = 〈x11, . . . , x1n〉 and
x2 = 〈x21, . . . , x2n〉 these are defined as:

‖x1 − x2‖L1
=

n∑
i=1

|x1i − x2i |, ‖x1 − x2‖L2
=

√√√√ n∑
i=1

(x1i − x2i)2 (1)

The kMeans clustering algorithm is an iterative refinement algorithm, which starts
with k random points considered as the means (the centroids) of k clusters. Each itera-
tion is then comprised of two main steps: (i) assign each data-point to the cluster whose

Fig. 1. The DeepSafe Approach

centroid is closest to it with respect to the chosen distance metric; and (ii) re-calculate
the new means of the clusters, which will serve as the new centroids. The iterations
continue until the assignment of data-points to clusters does not change. This indicates
that the clusters satisfy the constraints that the variance within each cluster is minimal
and that the data-points within each cluster are closer to the centroid of that cluster than
to the centroid of any other cluster.

3 The DeepSafe Approach

The DeepSafe approach is illustrated in Figure 1. DeepSafe has two main components:
clustering and verification. The inputs with known labels are fed into a clustering mod-
ule which implements a modified version of the kMeans algorithm (as described in
Section 3.1). The module generates clusters of similar inputs (wrt some distance met-
ric) known to have the same label. Every such cluster defines a region characterized by
a centroid (cen), radius (r) and label (l), which corresponds to the label of the inputs
used to form the cluster. Thus, a cluster is a subset of the inputs while a region is the
geometrical hypersphere defined by the cluster; for the rest of the paper we sometimes
use regions and clusters interchangeably, when the meaning is clear from the context.

For every region, the verification module is invoked (as described in Section 3.2).
This module uses Reluplex to check if there exists any input within the region for which
the neural network assigns a different label than l (the score in the figure will be ex-
plained below). This check is done separately for each label l’ other than l. If such an
input is found (formula is SAT), then this is a potential adversarial example that is re-
ported to the user. The radius is then reduced to exclude the adversarial input and the
check is repeated. When no such adversarial example is found, the network is declared
to be robust with respect to target l’, and correspondingly the region is declared targeted
safe for that label l’. If for a particular l’, the solver keeps finding adversarial examples
until r gets reduced to 0, the region is considered unsafe w.r.t. that label. If no adversar-

Fig. 2. Original clusters with k=2 (left), Clusters with modified kMeans (right)

ial examples are found for all the checks, the region is completely safe. If adversarial
cases are found for all labels, it is unsafe.

3.1 Labeled-Guided Clustering

We employ a modified version of the kMeans clustering algorithm to perform clustering
over the inputs with known correct labels. These inputs can be drawn from the training
data or can be generated randomly and labeled according to the outputs given by a
trained network. The kMeans approach is typically an unsupervised technique, meaning
that the clustering is based purely on the similarity of the data-points themselves. Here,
however, we use the labels to guide the clustering algorithm into generating clusters that
have consistent labels (in addition to containing points that are similar to each other).
The number of clusters, which is an input parameter of the kMeans algorithm, is often
chosen arbitrarily but in our case the algorithm starts by setting the number of clusters,
k, to be equal to the number of unique labels. Once the clusters are obtained, we check
whether each cluster contains only inputs with the same label. kMeans is then applied
again on each cluster that is found to contain multiple labels, with k set to the number
of unique labels within that cluster. This effectively breaks the “problematic” cluster
into multiple sub-clusters. The process is repeated until all the clusters contain inputs
which share a single label.

To illustrate the clustering, let us consider a small example with training data labeled
as either stars or circles. Each training data point is characterized by two dimensions/at-
tributes (x,y). The original kMeans algorithm with k = 2, will partition the training in-
puts into 2 groups, purely based on proximity w.r.t. the 2 attributes (Fig. 2a). However,
this simple approach would group stars and circles together. Our modified algorithm
creates the same partitions in its first iteration, but because each cluster contains train-
ing inputs with multiple labels, it then proceeds to iteratively divide each cluster into
sub-clusters. This finally creates 5 clusters as shown in (Fig. 2b): three with label star
and two with label circle. This example is typical for domains such as image classifica-
tion, where even a small change in some attribute value for certain inputs could change
their label.

Distance Metrics. We note that the similarity of the inputs within a cluster is determined
by the distance metric used for calculating the proximity of the inputs. Therefore, it is
important to choose a distance metric that generates acceptable levels of similarity for
the domain under consideration. We assume that inputs are representable as vectors

of numeric attributes and hence can be considered as points in Euclidean space. The
Euclidean distance (Eq. 1) is a commonly used metric for measuring the proximity
of points in Euclidean space. However, recent studies indicate that the usefulness of
Euclidean distance in determining the proximity between points diminishes as the di-
mensionality increases [1]. The Manhattan distance (Eq. 1) has been found to capture
proximity more accurately in high dimensions. Therefore, in our experiments, we set
the distance metric depending on the dimensionality of the input space (Section 4).

The clustering algorithm aims to produce neighborhoods of consistently-labeled in-
puts. The underlying assumption of our approach is that each such cluster will define
a safe region, in which all inputs (and not just the inputs used to form the cluster)
should be labeled consistently. We define the regions to have the centroid cen com-
puted by kMeans and the radius to be the average distance r of any instance from
the centroid. Note that we use the average instead of maximum distance. The reason
is that kMeans typically generates clusters that are convex, compact and spherically
shaped. However, the ideal boundaries of regions encompassing consistently labeled
points need not conform to this. Further, while inputs deep within a region are expected
to be labeled consistently, the points that are close to the boundaries may have different
labels. We therefore shrink the radius to increase the chances of obtaining a region that
is indeed safe.

3.2 Region Verification

In this step, we check if the regions defined by the clusters formed in the previous step
are safe for a given NN. The main hypothesis behind our approach is as follows:

Hypothesis 1 For a given region R, with centroid cen and radius r, any input x within
distance r from cen has the same true label l as that of the region:

‖x− cen‖ ≤ r ⇒ label(x) = l

If this hypothesis holds, it follows that any point x′ in the region which is assigned
a different label F (x′) 6= l by the network constitutes an adversarial perturbation. To
illustrate this on our example; a NN, may represent an input which is close to other stars
in the input layer as a point further away from them in the inner layers. Therefore, it
may incorrectly classify it as a circle.

We use Reluplex [10] to check the satisfiability of a formula representing the nega-
tion of Hypothesis 1 for every cluster for every label. The encoding is as follows://shown
in Eq. 2:

∃x. ‖x− cen‖L1
≤ r ∧ score(x, l′) ≥ score(x, l) (2)

Here, x represents an input point, and cen, r and l represent the centroid, radius and
label of the region, respectively. l′ represents a specific label, different from l. Reluplex
models the network without the final softmax layer, and so the outputs of the model
correspond to the outputs of the second last layer of the NN [REF]. This layer consists
of as many nodes as the number of labels and the output value for each node corresponds

to the level of confidence that the network assigns to that label for the given input. We
use score(x, y) to denote the level of confidence assigned to label y at point x.

The above formula holds for a given l′ if and only if there exists a point x within
distance at most r from cen, for which l′ is assigned higher confidence than l. Conse-
quently, if the property does not hold, then for every x within the cluster l, its score is
higher than l′. This ensures targeted robustness of the network for label l′: the network
is guaranteed to never map any input within the region to the target label l′. The for-
mula in Eq. 2 is checked for every possible l′ ∈ L− {l}, where L denotes the set of all
possible labels. If the query is unsatisfiable for all l′, it ensures complete robustness of
the network for the region; i.e., the network is guaranteed to map all the inputs in the
region to the same label as the centroid. This can be expressed formally as follows:

∀x. ‖x− cen‖L1 ≤ r ⇒ ∀l ∈ L− {l}. score(x, l) ≥ score(x, l′) (3)

from which it follows that Hypothesis 1 holds, i.e. that:

∀x. ‖x− cen‖L1 ≤ r ⇒ label(x) = l (4)

Note that as is the case with many SMT-based solvers, Reluplex typically solves
satisfiable queries more quickly than unsatisfiable ones. Therefore, in order to optimize
performance, we test the possible target labels l′ in descending order based on the scores
that they are assigned at the centroid, score(cen, l′). Intuitively, this is because labels
with higher scores are more likely to yield a satisfiable query.

Encoding Distance Metrics in Reluplex. Reluplex takes as input a conjunction of linear
equations and certain piecewise-linear constraints. Consequently, it is straightforward
to model the neural network itself and the query in Eq. 2. Our ability to encode the
distance constraint from the equation, ‖x − cen‖ ≤ r, depends on the distance metric
being used. While L1 is piecewise linear and can be encoded, L2 unfortunately cannot.
When dealing with domains whereL2 distance is a better measure of proximity, we thus
use the following approximation. We perform the clustering phase using theL2 distance
metric as described before and for each cluster obtain the radius r. When verifying
the property in Eq. 2, however, we use the L1 norm. Because ‖x − cen‖L1

≤ ‖x −
cen‖L2 , it is guaranteed that any adversarial perturbation discovered would have also
been discovered using the L2 norm. If no such adversarial perturbation is discovered,
however, we can only conclude that the portion of the corresponding region that was
checked is safe. This limitation could be overcome by using a tool that directly supports
L2 (however no such tools currently exist), or by enhancing Reluplex to support it.

Safe Regions and Scalability. The main source of computational complexity in neu-
ral network verification is the presence of non-linear, non-convex activation functions.
However, when restricted to a small domain of the input space, these functions may ex-
hibit linear behavior — in which case they can be disregarded and replaced with a linear
constraint, which greatly simplifies the problem. Consequently, performing verification
within the small regions discovered by DeepSafe is beneficial, as many activation func-
tions can often be disregarded.

The search space within a region is further reduced by restricting the range of val-
ues for each input attribute (input variable to the NN model). We calculate the minimum
and maximum values for every attribute based on the instances with known labels en-
compassed within a cluster. Reluplex has built-in bound tightening [10] functionality.
We leverage this by setting the lower and upper bounds for each of the input variables
within the cluster based on the respective minimum and maximum values.

Our approach lends itself to more scalable verification also through parallelization.
Because each region involves stand-alone verification queries, their verification can be
performed in parallel. Also, because Eq. 2 can be checked independently for every l′,
these queries can be performed in parallel — expediting the process even further.

4 Case Studies

We implemented DeepSpace using MATLAB R2017a for the clustering algorithm and
Reluplex v1.0 for verification. The runs were dispatched on a 8-Core 64GB server run-
ning Ubuntu 16.0.4. We evaluated DeepSpace on two case studies. The first network
is part of a real-world controller for the next-generation Airborne Collision Avoidance
System for unmanned aircraft (ACAS Xu), a highly safety-critical system. The second
network is a digit classifier over the popular MNIST image dataset.

Table 1. Summary of the analysis for the ACAS Xu network for 210 clusters

property # clusters min radius time(hours) #queries
safe 125 0.084 4 11.8

targeted safe 52 0.135 7.6 14.4
time out 33 NA 12 NA

4.1 ACAS Xu

ACAS X is a family of collision avoidance systems for aircraft which is currently un-
der development by the Federal Aviation Administration (FAA) [8]. ACAS Xu is the
version for unmanned aircraft control. It is intended to be airborne and receive sensor
information regarding the drone (the ownship) and any nearby intruder drones, and then
issue horizontal turning advisories aimed at preventing collisions. The input sensor data
includes: (i) ρ: distance from ownship to intruder; (ii) θ: angle of intruder relative to
ownship heading direction; (iii) ψ: heading angle of intruder relative to ownship head-
ing direction; (iv) vown: speed of ownship; (v) vint: speed of intruder; (vi) τ : time until
loss of vertical separation; and (vii) aprev: previous advisory. The five possible output
actions are as follows: Clear-of-Conflict (COC), Weak Right, Weak Left, Strong Right,
and Strong Left. Each advisory is assigned a score, with the lowest score corresponding
to the best action. The FAA is currently exploring an implementation of ACAS Xu that
uses an array of 45 deep neural networks. These networks were obtained by discretiz-
ing the two parameters, τ and aprev, and so each network contains five input dimensions

Table 2. Details of the analysis for some clusters for ACAS Xu

cluster# safe radius #queries time(min) slice
for label (Y/N)

5282 1 0.04 1 5.45 N
label:0 2 0.04 1 3.91 N

3 0.04 1 3.57 N
4 0.04 1 4.01 N

1783 1 0.16 4 1.28 Y
label:0 2 0.17 1 279 N

3 0.17 1 236 N
4 0.17 1 223 N

2072 0 0.06 1 11.51 N
label:1 2 0.014 9 0.98 N

3 0.011 7 0.71 N
4 0.012 5 0.58 N

6138 1 0.089 9 103.2 N
label:0 2 0.11 4 2.86 N

and treats τ and aprev as constants. Each network has 6 hidden layers and a total of 300
hidden ReLU activation nodes.

We applied our approach to several of the ACAS XU networks. We describe here in
detail the results for one network. Each input consists of 5 dimensions and is assigned
one of 5 possible output labels, corresponding to the 5 possible turning advisories for
the drone (0:COC, 1:Weak Right, 2:Weak Left, 3:Strong Right, and 4:Strong Left). We
were supplied a set of cut-points, representing valid important values for each dimen-
sion, by the domain experts [8]. We generated 2662704 inputs (cartesian product of the
values for all the dimensions). The network was executed on these inputs and the out-
put advisories (labels) were verified. These were considered as the inputs with known
labels for our experiments.

The labeled-guided clustering algorithm was applied on the inputs using the L2

distance metric. Clustering yielded 6145 clusters with more than one input and 321
single-input clusters. The clustering took 7 hours. For each cluster we computed a re-
gion, characterized by a centroid (computed by kMeans), radius (average distance of
every cluster instance from the centroid), and the expected label (the label of all the
cluster instances).

We first evaluated the network on all the centroids as they are considered repre-
sentative of the entire cluster and should ideally have the expected label. The network
assigned the expected label for the centroids of 5116 clusters (83% of total number of
clusters). For the remaining 1029 clusters, we found that they contained few labeled
instances spread out in large areas.Therefore, we considered these clusters were not
precise and our analysis was inconclusive. For singleton clusters, we fall back to check-
ing local robustness using previous techniques [10]. These stand-alone points serve to
identify portions of the input space which require more training data, thus potentially
more vulnerable to adversarial perturbations.

Amongst the remaining 5116 clusters, we picked randomly 210 clusters to illustrate
our technique. These clusters contain 659315 labeled inputs (24% of the total inputs

with known labels). For each region corresponding to the respective clusters, we applied
DeepSafe to check equation 2 for every label. The distance metric used was L1 since L2

can not be handled by Reluplex (see section 3 that explains why this is still safe). The
results are presented in tables 1 and 2. The min radius in table 1, refers to the average
minimum radius around the centroid of each region for which the safety guarantee
applies (averaged over the total number of regions for that safety type). The # queries
refers to the number of times the solver had to be invoked until an UNSAT was obtained,
averaged over all the regions for that property.

DeepSafe was able to identify 125 regions which are completely safe, i.e. the net-
work yields a label consistent with the neighboring labeled inputs within the region. 52
regions are targeted safe, the network is safe against misclassifying inputs to certain
labels. For instance, the inputs within region 6138 (Table 2) with an expected label 0
(COC), were safe against misclassification only to labels 1 (weak right) and 2 (weak
left). The solver timed out without returning any result for the remaining labels. The
analysis timed out without returning a concrete result for any label for 33 clusters. A
time out does not allow to provide a proof for the regions, although the likely answer is
safe (generally, solvers take much longer when there is no solution).

The min radius in table 1, refers to the average minimum radius around the centroid
of each region for which the safety guarantee applies (averaged over the total number
of regions for that safety type).

The # queries refers to the number of times the solver had to be invoked until an
UNSAT was obtained, averaged over all the regions for that property.

4.2 MNIST Image Dataset

The MNIST database is a large collection of handwritten digits that is commonly used
for training various image processing systems [12]. The dataset has 60,000 training
input images, each characterized by 784 attributes and belonging to one of 10 labels.
We used a network that comprised of 3 layers, each with 10 ReLU activation nodes.
Clustering was applied using the L1 distance metric. It yielded 6654 clusters with more
than one input and 5681 single-input clusters. The clustering consumed 10 hours. A
separate process for verification of each cluster was spawned with a time-out of 12
hours.

Table 3. Summary of the analysis for MNIST network for 80 clusters

property # clusters min radius time(hours) # queries
safe 7 2.46 11.27 2.85

targeted safe 63 5.19 11.02 4.87
time out 10 NA 12 NA

For the singleton clusters, as is the case with ACAS Xu, we performed local robust-
ness checking as in previous approaches.

Table 3 shows the summary of the results for the runs for 80 clusters that we selected
for evaluation. In past studies, the MNIST network has been shown to be extremely

Fig. 3. Inputs highlighted in light blue are mis-classified as Strong Right instead of COC (left).
Inputs highlighted in light blue are mis-classified as Strong Right instead of Strong Left(right).

Fig. 4. Images of 1 misclassified as 8, 4, and 3

vulnerable to misclassification on adversarial perturbations even with state-of-the art
networks [3]. Therefore, as expected, it is easy to determine SAT solutions and they
were discovered very fast (within a minute). However, it is very time consuming to
prove safety; the verification time is much higher than that of the ACAS Xu application
as it is mainly impacted by the large number of input variables (784 attributes). We
would like to highlight that our work is the first to successfully identify safety regions
for MNIST even on a fairly vulnerable network.

For 7 clusters, the solver returned UNSAT for all labels within 12 hours. For 30
clusters, the solver returned UNSAT only for few labels but timed out before returning
any solution for the other labels. These have been included in the targeted safe property
in the table. Additionally, based on the nature of this domain, we can consider it safe to
assume that if for any label the solver does not return a SAT solution within 10 hours,
then it is safe w.r.t. that label even if it does not prove unsatisfiability within this time.
This happened to be the case for 33 clusters, where the solver could not find a solution
for a specific target label despite executing for more than 10 hours. These have been
included in the targeted safe type as well. For 10 of the remaining clusters, the solver
kept finding adversarial examples despite iterative reductions of the radius and the time-
out occurred before the radius reduced to 0. These have been included as time out in the
table, since we cannot determine for sure if the region should be marked unsafe for the
specific labels.

5 Discussion

We compared DeepSafe with a method of randomly choosing inputs with known labels
and checking for local adversarial robustness using previous work [10]. This technique

searches for inputs around the given fixed input, by varying each input variable (di-
mension) in the range of [fixedvalue − ε, fixedvalue + ε] (L∞ distance metric). It
checks if there exists any input in this range, for which the network assigns a higher
score to any other label than that of the fixed input. The algorithm starts with a stan-
dard epsilon value of 0.1 and iteratively reduces the value until UNSAT is obtained or
the value reduces to 0.01. We chose 210 random points for ACAS Xu and 80 random
points for MNIST respectively, in line with the number of regions that we checked with
DeepSafe.

We found that for MNIST, local robustness checking found no safe regions around
any of the 80 points, whereas DeepSafe found 7 safe regions and 63 targeted safe re-
gions. For ACAS Xu, this technique yielded only 62 safe regions which are completely
safe compared to 125 safe regions that were found using DeepSafe. This experiment
shows that the choice of input points and the delta around these points play an impor-
tant role in effective adversarial robustness checking. We also looked at the validity of
the adversarial examples generated by DeepSafe. If an adversarial example is invalid
or spurious, it indicates that the expected label is incorrect for that input and that the
label generated by the network is in fact correct. During our analysis for ACAS Xu we
found adversarial examples, which were validated by domain experts. The adversarial
cases were found to be valid, albeit not of high criticality. The adversarial examples for
MNIST were converted to images and manually verified to be valid (see Fig. 4).

There could be scenarios where both the region and the network agree on the labels
for all inputs, and still this could not be the desired behavior. This would impact the
validity of the safety guarantees provided by DeepCheck. We addressed this issue by
validating the safety regions for ACAS Xu with the domain experts. The mismatch of
labels for the centroid of a region does potentially indicate an imprecise oracle. How-
ever, we found that the number of such regions is not high (1029 out of 6145 clusters
for ACAS Xu).

6 Related Work

The vulnerability of neural networks to adversarial perturbations was first discovered
by Szegedy et al. in 2013 [17]. They model the problem of finding the adversarial
example as a constrained minimization problem. Goodfellow et al. [6] introduced the
Fast Gradient Sign Method for crafting adversarial perturbations using the derivative
of the model’s loss function with respect to the input feature vector. Jacobian-based
Saliency Map Attack (JSMA) [14] proposed a method for targeted misclassification by
exploiting the forward derivative of an NN to find an adversarial perturbation that will
force the model to misclassify into a specific target class.

Carlini and Wagner [3] recently proposed an approach that could not be resisted by
state-of-the-art networks such as those using defensive distillation. Their optimization
algorithm uses better loss functions and parameters (empirically determined) and uses
three different distance metrics. Deep Learning Verification (DLV) [7] is an approach
that defines a region of safety around a known input and applies SMT solving for check-
ing robustness. They search for possibly-adversarial inputs by manipulating the given
valid input in a discretized input space. They can only guarantee freedom of adversarial

perturbations within the discrete points that are explored. Our clustering approach can
potentially improve the technique by constraining the discrete search within regions.

Recent work [11] using Reluplex discusses in depth refined versions of global
and local robustness, which take into account the confidence (C) that the network is
placing on its predictions. For instance, the local robustness at input x0 is defined as
∀x. ‖x − x0‖ < δ =⇒ ∀l.‖C(F, x, l) − C(F, x0, l)‖ < ε. Similarly, the global
robustness, informally introduced in [10], is defined as ∀x, x′. ‖x − x′‖ < δ =⇒
∀l.‖C(F, x, l) − C(F, x, l)‖ < ε. However, this check is expensive and also requires
user input for acceptable values for both δ and ε. The motivation for taking into account
the confidence is to better handle the inputs that lay on boundaries between labels, in
the sense that there should be no spikes greater than ε in the levels of confidence that
the network assigns to each labels for these points. However, the value of δ and epsilon
need not be the same for all inputs and all labels respectively. For instance, points em-
bedded deep inside consistently labeled regions, the δ should be large while for points
on the boundaries between labels only a small δ could be tolerable. Nevertheless, we be-
lieve that DeepSafe can be used beneficially with the above approach, by automatically
finding regions that can then be checked using the more refined local check.

7 Conclusion

This paper presents a data-guided technique for assessing the adversarial robustness of
neural networks. The technique can find adversarial perturbations or prove they cannot
occur within well-defined geometric regions in the input space that correspond to clus-
ters of similar inputs known to share the same label. In doing so, the approach identifies
and provides proofs for regions of safety in the input space within which the network
is robust with respect to target labels. Experiments with the ACAS Xu and MNIST net-
works highlight the potential of the approach in providing formal guarantees about the
robustness of neural networks in a scalable manner. Checking robustness for deep neu-
ral networks is an active area of research. As part of future work, we plan to integrate
our approach with other solvers that will broaden the application of DeepSpace to other
kinds of neural networks and also investigate testing, guided by the computed regions,
as an alternative to verification for increased scalability.

Acknowledgements. This work was partially supported by grants from NASA, NSF,
FAA and Intel.

References

1. Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising behavior
of distance metrics in high dimensional spaces. In Proc. 8th Int. Conf. on Database Theory
(ICDT), pages 420–434, 2001.

2. N. Carlini, G. Katz, C. Barrett, and D. Dill. Ground-Truth Adversarial Examples, 2017.
Technical Report. http://arxiv.org/abs/1709.10207.

3. Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In Proc. 38th IEEE Symposium on Security and Privacy, 2017.

4. R. Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Proc.
15th Int. Symp. on Automated Technology for Verification and Analysis (ATVA), 2017.

5. Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner. Detecting
adversarial samples from artifacts, 2017. Technical Report. http://arxiv.org/abs/
1703.00410.

6. Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing ad-
versarial examples, 2014. Technical Report. http://arxiv.org/abs/1412.6572.

7. Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep
neural networks. In Proc. 29th Int. Conf. on Computer Aided Verification (CAV), pages 3–29,
2017.

8. K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy compression for aircraft
collision avoidance systems. In Proc. 35th Digital Avionics System Conf. (DASC), pages 1–
10, 2016.

9. Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silver-
man, and Angela Y. Wu. An efficient k-means clustering algorithm: Analysis and implemen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):881–892,
2002.

10. G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An efficient SMT
solver for verifying deep neural networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 97–117, 2017.

11. G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Towards proving the adver-
sarial robustness of deep neural networks. In Proc. 1st Workshop on Formal Verification of
Autonomous Vehicles (FVAV), pages 19–26, 2017.

12. Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

13. Nicolas Papernot and Patrick D. McDaniel. On the effectiveness of defensive distillation,
2016. Technical Report. http://arxiv.org/abs/1607.05113.

14. Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In Proc. 1st
IEEE European Symposium on Security and Privacy (EuroS&P), pages 372–387, 2016.

15. L. Pulina and A. Tacchella. An abstraction-refinement approach to verification of artificial
neural networks. In Proc. 22nd Int. Conf. on Computer Aided Verification (CAV), pages
243–257, 2010.

16. L. Pulina and A. Tacchella. Challenging SMT solvers to verify neural networks. AI Commu-
nications, 25(2):117–135, 2012.

17. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks, 2013. Technical Report. http://arxiv.org/
abs/1312.6199.

